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1. Modelling growth and reproduction from the Kooijman-Metz model 

 

The Kooijman-Metz energy budget model (Kooijman & Metz 1984) assumes that individual 

organisms are isomorphic which means that body weight W is proportional to the cubed 

length of an individual. Individuals are born at length Lb and mature at length Lp. The rate at 

which individuals ingest food, I, is assumed to be proportional to body surface area and 

hence to the squared length of an organism: 

 

𝐼 = 𝐼𝑚𝑎𝑥𝑌𝐿
2    

 

where L is length of an individual, Y  is the experienced feeding level at time t, Imax is the 

proportionality constant relating maximum food ingestion rate to L2. Ingested food is 

assimilated with a constant efficiency . 

Of the energy assimilated by individuals, a fraction  is allocated to somatic growth 

and maintenance (respiration energy) and the remainder to reproduction (reproduction 

energy). Juveniles do not produce young and instead reproduction energy is assumed to be 

allocated to the development of the reproductive apparatus. Respiration energy is divided 

into (i) energy for maintenance, which is assumed proportional to body weight and thus 

scales with the cubed length of an individual following 𝜉𝐿3 (where 𝜉 is the proportionality 

constant relating maintenance energy to cubed length), and (ii) energy spent on tissue 

growth. Individuals therefore change in weight W at a rate that is proportional to the 

difference between the respiration energy and energy required for maintenance: 
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𝑑𝑊

𝑑𝑡
= 𝜓−1(𝜅𝜀𝐼𝑚𝑎𝑥𝑌𝐿

2 − 𝜉𝐿3) 

        

where  represents the energetic requirements to grow one unit in body weight. We 

substitute the weight-length relationship 𝑊 = 𝛽𝐿3 (where  is a weight-length scaling 

constant) which leads to the following change in length over time (Kooijman & Metz 1984): 

 

𝑑𝐿

𝑑𝑡
= 𝑟̇𝐵(𝐿𝑚 ∙ 𝑌 − 𝐿) 

          

where maximum length at abundant food 𝐿𝑚 = 𝜅𝜀𝐼𝑚𝑎𝑥/𝜉 and 𝑟̇𝐵 = 𝜉/(3𝛽𝜓) is the von 

Bertalanffy growth rate. After rearrangement this becomes: 

 

𝑑𝐿

𝑑𝑡
= −𝑟̇𝐵(𝐿 − 𝑌𝐿𝑚)  ⇔

𝑑𝐿

𝐿 − 𝑌𝐿𝑚
= −𝑟̇𝐵𝑑𝑡 

 

After integration from time t to time t + 1, this results in: 

 

ln(𝐿(𝑡 + 1) − 𝑌𝐿𝑚) − ln(𝐿(𝑡) − 𝑌𝐿𝑚) = −𝑟̇𝐵𝑎 ⇔
𝐿(𝑡 + 1) − 𝑌𝐿𝑚
𝐿(𝑡) − 𝑌𝐿𝑚

= 𝑒−𝑟̇𝐵𝑡 

 

which leads to (assuming individuals can shrink under starvation conditions): 

 

𝐿(𝑡 + 1) = 𝐿(𝑡)𝑒−𝑟𝐵̇ + (1 − 𝑒−𝑟𝐵̇)𝐿𝑚 ∙ 𝑌, 

 

which is Eqn 3 in the main text.  
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The remaining fraction 1 – κ of consumed food energy is allocated to reproduction (or, in 

case of juveniles, to the development of reproductive organs and tissue) and hence the 

reproduction energy equals (1 − 𝜅)𝜀𝐼𝑚𝑎𝑥𝑌𝐿
2. Dividing this energy by the energy investment 

per single offspring, 𝛽𝐿𝑏
3 , leads to the number of offspring per unit time from a female with 

length 𝐿(𝑡) at time t (assuming individuals can shrink under starvation conditions): 

 

𝑅(𝑡) =
(1 − 𝜅)𝜀𝐼𝑚𝑎𝑥𝑌𝐿

2(𝑡)

𝛽𝐿𝑏
3  

 

Defining 𝑅𝑚 = (1 − 𝜅)𝜀𝐼𝑚𝑎𝑥𝐿𝑚
2 /(𝛽𝐿𝑏

3 ) as the maximum reproduction rate of an individual 

reared at the highest feeding level, the reproduction rate can also be expressed as:  

 

𝑅(𝑡) =
𝑌 ∙ 𝑅𝑚 ∙ 𝐿

2(𝑡)

𝐿𝑚2
. 
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2. Consequences of variable von Bertalanffy growth rate in mites 

 

Growth of bulb mites is highly plastic and shows great variation with food availability, as 

shown in Fig. S1 for mites raised on ad lib access to yeast, the high feeding level (Fig. S1: 

black  squares), and ad lib access to filter paper, the low feeding level (Fig. S1: grey 

triangles). The Kooijman-Metz DEB model, and hence the DEB-IPM, assumes a constant von 

Bertalanffy growth rate 𝑟̇𝐵. Fitting the von Bertalanffy growth rate equation 𝐿𝑡 = 𝐿∞ −

[𝐿∞ − 𝐿𝑏]𝑒
−𝑟̇𝐵𝑡 against the growth data of mites on the low and high feeding level (keeping 

𝐿𝑏 fixed at 0.166 mm) returns a value of 𝐿∞ = 0.756 mm and  𝑟̇𝐵 = 0.015. Inputting these 

values in the von Bertallanfy growth rate equation to predict body length as a function of 

age results in a good fit against the growth data of mites on the low feeding level (Fig. S1: 

red line versus grey squares), but completely underestimates the growth of mites on the 

high feeding level (Fig. S1: red line versus black triangles). For this reason we decided to 

linearly relate  𝑟̇𝐵 to feeding level and ultimate length following  𝑟̇𝐵 = 1/(𝛽 + 𝛼𝐿∞) (Eqn 15 

in the main text), where the coefficient  is related to energy conductance and the 

coefficient  to somatic maintenance (Kooijman et al. 2008). Fitting the von Bertalanffy 

growth rate with different 𝑟̇𝐵 values for the two different feeding levels significantly 

improves predictions on mite growth on the low feeding level data (Fig. S1: grey line versus 

grey symbols). Had we assumed a constant value of 𝑟̇𝐵 = 0.015 for all feeding levels, this 

would have resulted in a great mismatch between predicted and observed population 

growth rate, lifetime reproductive success and generation time for nearly all feeding levels 

(Fig. S2). 
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Figure S1. Observed and predicted body length (mm) of bulb mites raised on ad lib access to 

yeast (high feeding level: black squares) and ad lib access to filter paper (low feeding level: 

grey triangles) in relation to age (days). Lines are predicted body lengths using the von 

Bertalanffy growth rate equation 𝐿𝑡 = 𝐿∞ − [𝐿∞ − 𝐿𝑏]𝑒
−𝑟̇𝐵𝑡. In this equation, 𝐿∞ and 𝐿𝑏 

are measured directly from data (Table 1 in the main text) and 𝑟̇𝐵 is estimated by fitting the 

latter equation against empirical data on body length versus age of mites (see main text). 

Three predictions are shown where 𝑟̇𝐵 is estimated using only the yeast data (black line, 

with 𝐿∞ = 1.008, 𝐿𝑏 = 0.166 and 𝑟̇𝐵 = 0.083); using only filter paper data (grey line, with 

𝐿∞ = 0.642, 𝐿𝑏 = 0.167 and 𝑟̇𝐵 = 0.016) and using both data sets (red line, with 𝐿∞ =

0.756, 𝐿𝑏 = 0.166 and 𝑟̇𝐵 = 0.015.  
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Figure S2. Population growth rate  (A [d-1]), lifetime reproductive success R0 (B), and 

generation time T (C [days]) in relation to feeding level E(Y) as predicted for three values of 

(Y): (Y) = 0.1 (solid lines); (Y) = 0.3 (dashed lines) and (Y) = 0.5 (dotted lines) for bulb 

mites, assuming a constant value of 𝑟̇𝐵 = 0.015. All other parameter values are as described 

in the main text and Table 1. Grey symbols are observed values on a low [E(Y) = 0.64], 

intermediate [E(Y) = 0.85] and high feeding level [E(Y) = 0.95] (see Fig. 2 in the main text). 

Vertical lines through the symbols in (B) and (C) are 95% confidence intervals.  
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3. Additional assumptions of the DEB-IPM: when individuals do not shrink 

 

When individuals do not shrink under starvation conditions, then some further assumptions 

have to be introduced into the equations describing growth and reproduction. To stop 

individuals from decreasing in length, growth in body size stops when the individual length 

is larger than 𝐿𝑚 ∙ 𝑌 as the default allocation to growth and maintenance, the fraction κ of 

assimilated energy (= respiration energy) is not sufficient to cover maintenance costs alone. 

Eqn 3 in the main text then becomes: 

 

𝐿(𝑡 + 1) = {
𝐿(𝑡)𝑒−𝑟𝐵̇ + (1 − 𝑒−𝑟𝐵̇)𝐿𝑚 ∙ 𝑌    for 𝐿 ≤ 𝐿𝑚𝑌

𝐿(𝑡)                                                       otherwise
 ,                                     eqn S1 

 

which is Eqn 4 in the main text. Using this equation, the expected length E(L) and variance in 

length 2(L) at time t + 1 for a cohort of individuals of length L is then given by: 

 

𝐸(𝐿(𝑡 + 1)) = {
𝐿(𝑡)𝑒−𝑟𝐵̇ + (1 − 𝑒−𝑟𝐵̇)𝐿𝑚 ∙ 𝐸(𝑌)    for 𝐿 ≤ 𝐿𝑚𝐸(𝑌)

𝐿(𝑡)                                                                    otherwise
                     eqn S2 

 

and  

 

𝜎2(𝐿(𝑡 + 1)) = {(1 − 𝑒
−𝑟𝐵̇)2𝐿𝑚

2 𝜎2(𝑌)    for 𝐿 ≤ 𝐿𝑚𝐸(𝑌)
0                                            otherwise

,                                        eqn S3 
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which are respectively Eqn 7 and Eqn 8 in the main text.  

 

Reproduction 

 

When the respiration energy (the fraction  of all assimilated energy) in not sufficient to 

cover maintenance costs, ingested energy is rechannelled from reproduction to cover 

maintenance, which occurs for 𝐿 > 𝐿𝑚 ∙ 𝑌 (see also main text). For 𝐿 > 𝐿𝑚 ∙ 𝑌/𝜅, an 

individual is assumed to die instantaneously (see also main text). The rate of reproduction of 

a cohort of individuals of length L is then given by:  

 

𝑅(𝐿(𝑡)) =

{
 
 

 
 

0                                    for 𝐿𝑏 ≤ 𝐿 < 𝐿𝑝

𝐸(𝑌)𝑅𝑚𝐿(𝑡)
2/𝐿𝑚

2                                for 𝐿𝑝 ≤ 𝐿 ≤ 𝐿𝑚𝐸(𝑌)

𝑅𝑚
1 − 𝜅

[𝐸(𝑌)𝐿(𝑡)2 −
𝜅𝐿(𝑡)3

𝐿𝑚
]            for 𝐿𝑚𝐸(𝑌) < 𝐿 ≤ 𝐿𝑚𝐸(𝑌)/𝜅

       eqn S4 

 

These extra conditions for growth and reproduction do not necessarily affect model 

outcome, as is illustrated in case of bulb mites in Fig. S3.  
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Figure S3. Population growth rate  (top row), lifetime reproductive success R0 (middle 

row), and generation time (T, days) (bottom row) as predicted for the bulb mite in relation 

to feeding level E(Y) for three values of (Y): (Y) = 0.1 (left-hand column); (Y) = 0.3 

(middle column) and (Y) = 0.5 (right-hand column). Two scenarios are shown that have the 

same outcome. The red lines denote the scenario where individuals can shrink under 

starvation conditions (using Eqn 5, Eqn 6 and Eqn 10 of the main text to describe growth 

and reproduction), whereas the black symbols denote the scenario where individuals do not 

shrink under starvation conditions (using Eqns S4 – S6 to describe growth and 

reproduction). Parameter values are  = -137.8,  = 151.0,  = 0.082, Lb = 0.166, Lm = 1.008, 

 = 0.03, and Rm = 32. The parameter Lp depends on feeding level (see main text).  
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4. Building the DEB-IPM: a detailed explanation and toy example 

 

The integral projection model projects a distribution of body length at time t to a new 

distribution at time t + 1 (Easterling et al. 2000). To understand how this works it is easiest 

to follow the fate of a cohort of bulb mite individuals with body length L at time t that 

experience a feeding level of E(Y) = 0.95 with (Y) = 0.5. We use all default parameter values 

for bulb mites:  = 0.082, Lb = 0.166, Lm = 1.008,  = 0.03, 𝑟𝐵̇= 0.083, and Rm = 32 (Table 1 of 

the main text), and assume individuals can shrink in response to starvation conditions. 

Suppose that this cohort of bulb mites is of length L = 0.6 mm. The probability that this 

cohort survives from time t to t + 1 is calculated using Eqn 12 of the main text: 𝑆(0.6) =

𝑒−0.03 = 0.97 (see Table 1 for parameter values); hence 97% of this cohort survives. The 

surviving part of the cohort then grows. To generate the distribution of body lengths among 

survivors, one calculates 𝐺(𝐿′, 0.6) × 0.97. The function 𝐺(𝐿′, 0.6) generates a Normal 

distribution with mean 𝐸(𝐿(𝑡 + 1)) = 𝐿(𝑡)𝑒−𝑟𝐵̇ + (1 − 𝑒−𝑟𝐵̇)𝐿𝑚 ∙ 𝐸(𝑌) = 0.6 ∙ 𝑒
−0.083 +

(1 − 𝑒−0.083) ∙ 1.008 ∙ 0.95 = 0.63 (Eqn 5 of the main text), and standard deviation 

𝜎2(𝐿(𝑡 + 1)) = (1 − 𝑒−𝑟𝐵̇)2𝐿𝑚
2 𝜎2(𝑌) =  (1 − 𝑒−0.083)2 ∙ 1.0082 ∙ 0.52 = 1.6 ∙ 10−3 (Eqn 6 

of the main text), which should then be multiplied by 0.97. The next step is to consider 

reproduction. Our cohort of individuals is larger than Lp = 0.564 and hence reproduction rate 

equals 𝐸(𝑌)𝑅𝑚𝐿(𝑡)
2/𝐿𝑚

2 = 0.95 ∙ 32 ∙ 0.62/1.0082 = 10.77 eggs per day (Eqn 10 of the 

main text). The distribution of body lengths among these offspring is calculated by using 

𝐷(𝐿′, 0.6) × 10.77 (Eqn 13 of the main text). The function 𝐷(𝐿′, 0.6) generates a Normal 

distribution with mean 𝐸(𝐿𝑏̅̅ ̅(𝑡)) = 0.166 and standard deviation 𝜎𝐿𝑏
2 = 0 (as we assumed 
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that parents of all sizes are equally likely to produce offspring of a constant size Lb), which 

should then be multiplied by the total number of offspring produced, 10.77. 

 The distribution of body lengths L’ generated by a cohort of individuals of length L = 

0.6 mm is then obtained by summing the distributions 𝐷(𝐿′, 0.6) × 10.77 and 𝐺(𝐿′, 0.6) ×

0.97: 𝑁(𝐿′|0.6, 𝑡 + 1) = 𝐷(𝐿′, 0.6)𝑅(0.6) + 𝐺(𝐿′, 0.6)𝑆(0.6), where 𝑁(𝐿′|0.6, 𝑡 + 1) is the 

expected distribution of body lengths at time t + 1 produced by a cohort of individuals of 

length 0.6 mm at time t. When considering cohorts of individuals all possible lengths, i.e. 

any length between the shortest and longest length observed in a population, the 

distribution of body lengths at time t can be written as  𝑁(𝐿, 𝑡). The expected distribution 

for cohorts of all possible lengths L at time t + 1 is 𝑁(𝐿′|𝐿(𝑡), 𝑡 + 1); multiplying this 

distribution by the number of cohorts of individuals of length L at time t, and summing 

across all these distributions, generates the distribution of body lengths at time t + 1: 

 

 𝑁(𝐿′, 𝑡 + 1) = ∫ [𝐷(𝐿′, 𝐿(𝑡))𝑅(𝐿(𝑡)) + 𝐺(𝐿′, 𝐿(𝑡))𝑆(𝐿(𝑡))]𝑁(𝐿, 𝑡)𝑑𝐿
Ω

 

 

which is Eqn 1 of the main text. 

 Predictions on population growth rate (), lifetime reproductive success (R0) and 

generation time (T) are calculated by discretising the IPM. This is done by choosing a 

sequence of closely spaced body lengths that starts below the shortest observed body 

length and ends above the longest observed body length. In the bulb mite study case, we 

worked with a sequence of 200 numbers long. In general, the discrete approximation of the 

continuous IPM is better with a shorter bin interval (interval between consecutive length 

values), but this trades off against an increase in calculation time. The preferred way is to 

explore a range of bin sizes and choose a number where results are no longer noticeably 
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affected by decreasing bin size (Easterling et al. 2000). Once the range of body lengths 

number of bins are chosen, the next step is to calculate the midpoint value of each bin, and 

then evaluate each of the four fundamental functions at each midpoint value. All calculated 

values are then stored in a matrix for further analysis. 

 A matrix is a square or rectangular array of numbers. Matrix approximations of IPMs 

are always square matrices. Each column in the matrix approximation of the IPM represents 

the midpoint of a body length bin at time t; each row represents the midpoint of a body 

length bin at time t + 1. Each individual item, or entry, in the matrix represents the transition 

rate of a cohort of individuals from a body length bin at time t to a body length bin at time t 

+ 1. To create the matrix approximation of the DEB-IPM, four matrices were calculated: S, R, 

G, and D. The matrix S is a diagonal matrix, which means that the only matrix entries that 

can have values that are not zero are those that lie on the diagonal (running from the top-

left corner to the bottom right corner); all other entries in the matrix are zero. The entries 

on the diagonal are the survival rate values for cohorts in each body length bin and 

represent cohorts of individuals that do not move from one body length to another between 

time t and time t + 1. Likewise, R is also a diagonal matrix, but here, values on the diagonal 

describe the expected number of offspring produced by a cohort of individuals of length L at 

time t. D and G are not diagonal matrices as cohorts of individuals can move between body 

length bins either by growing (or shrinking), G, or by producing offspring with a body length 

different from their own, D. Each column in D and G sums to one because surviving 

individuals must express a body length value at time t + 1 (G) and offspring must express a 

body length value when they enter the population (D). The final step is to create a 

discretised version of 𝑁(𝐿, 𝑡), which is typically called n(t) and which describes the number 

of cohorts of individuals within each body length bin. 



14 
 

 To give a toy example of how to construct these matrices, as before, we take the 

values: E(Y) = 0.95, (Y) = 0.5,  = 0.082, Lb = 0.166, Lm = 1.008,  = 0.03, 𝑟𝐵̇= 0.083, and Rm = 

32. We take a shortest body length of 0.10 mm and a longest body length of 1.10 mm, and 

divide this range into ten body length bins: 0.1 – 0.2 mm; 0.2 – 0.3 mm; 0.3 – 0.4 mm; etc. 

The midpoints of these bins respectively are: 0.15, 0.25, 0.35,…,1.05 mm. Using Eqn 12 of 

the main text we calculate 𝑆(𝐿(𝑡)) = 𝑒−0.03 = 0.97 (see above), which leads to: 

𝐒 =

[
 
 
 
 
 
 
 
 
 
0.97 0 0 0 0 0 0 0 0 0
0 0.97 0 0 0 0 0 0 0 0
0 0 0.97 0 0 0 0 0 0 0
0 0 0 0.97 0 0 0 0 0 0
0 0 0 0 0.97 0 0 0 0 0
0 0 0 0 0 0.97 0 0 0 0
0 0 0 0 0 0 0.97 0 0 0
0 0 0 0 0 0 0 0.97 0 0
0 0 0 0 0 0 0 0 0.97 0
0 0 0 0 0 0 0 0 0 0.97]

 
 
 
 
 
 
 
 
 

 

To fill in G, we need to calculate 𝐺(𝐿′, 𝐿(𝑡)), where L(t) equals 0.15, 0.25, 0.35,…, 1.05 mm, 

which results in:  

𝐆 =

[
 
 
 
 
 
 
 
 
 
0.787 0 0 0 0 0 0 0 0 0
0.213 0.889 0 0 0 0 0 0 0 0
0 0.111 0.945 0 0 0 0 0 0 0
0 0 0.055 0.974 0 0 0 0 0 0
0 0 0 0.026 0.988 0 0 0 0 0
0 0 0 0 0.012 0.994 0 0 0 0
0 0 0 0 0 0.006 0.997 0 0 0
0 0 0 0 0 0 0.003 0.999 0 0
0 0 0 0 0 0 0 0.001 0.999 0.001
0 0 0 0 0 0 0 0 0.001 0.999]

 
 
 
 
 
 
 
 
 

.  

Using Eqn 10 of the main text we can calculate 𝑅(𝐿(𝑡)) for each midpoint value, which 

results in: 
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𝐑 =

[
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 9 0 0 0 0 0
0 0 0 0 0 13 0 0 0 0
0 0 0 0 0 0 17 0 0 0
0 0 0 0 0 0 0 22 0 0
0 0 0 0 0 0 0 0 27 0
0 0 0 0 0 0 0 0 0 33]

 
 
 
 
 
 
 
 
 

. 

Finally, we use Eqn 13 of the main text to calculate 𝐷(𝐿′, 𝐿(𝑡)), which results in: 

𝐃 =

[
 
 
 
 
 
 
 
 
 
1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 

. 

The fact that there are only ones on the first row of D and zeros elsewhere is explained by 

the fact that we assumed that all parents are equally likely to produce offspring of a size Lb 

with 𝜎𝐿𝑏
2 = 0, which means that all offspring produced are 0.166 mm and always fall in the 

first body length bin of 0.1 – 0.2 mm.  



16 
 

5. Consumer-resource DEB-IPM: construction and a bulb mite application 

 

Construction of a consumer-resource DEB-IPM 

 

The DEB-IPM presented in the main text can be extended to include resource dynamics and 

population feedback on resource dynamics. In the absence of consumers, we assume that 

the resource grows according to: 

 

𝐻(𝑋(𝑡), 𝑡 + 1) = (1 − 𝜌)𝑋(𝑡) + 𝜌𝑋𝑚𝑎𝑥,      (eqn S5) 

 

where  is the fraction of resource that is replenished every time step and Xmax equals the 

resource abundance in the absence of consumers. This form of resource growth in discrete 

time is analogous to resource growth following semi-chemostat dynamics in continuous 

time. An individual consumer is assumed to forage on the shared resource following the 

scaled Holling type II functional response so that the intake rate of an individual consumer 

of length L equals 𝐼𝑚𝑎𝑥𝐿
2𝑌 with maximum ingestion rate Imax (see above). Resource 

consumption of a cohort of individuals of length L between time t and time t + 1 then equals 

(assuming that resource density available for consumption stays constant within the time 

interval):  

 

𝐶(𝐿(𝑡), 𝑡) = ∫ 𝐼𝑚𝑎𝑥𝐿
2𝑁(𝐿, 𝑡)𝑌𝑓(𝑌)𝑑𝑌

= 𝐼𝑚𝑎𝑥𝐿
2𝑁(𝐿, 𝑡)∫𝑌𝑓(𝑌)𝑑𝑌                                                      

= 𝐼𝑚𝑎𝑥𝐿
2𝑁(𝐿, 𝑡)𝐸(𝑌)                                                                   (eqn S6) 
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As explained in the main text, 𝑌 is assumed to follow a probability distribution f(Y) at the 

individual level with mean 𝐸(𝑌) = 𝑋/(𝐾 + 𝑋). Change in resource density between time t 

and t + 1 in the presence of consumers is the difference between resource growth and 

consumption by the whole population between time t and t + 1: 

 

𝑋(𝑡 + 1) = (1 − 𝜌)𝑋(𝑡) + 𝜌𝑋𝑚𝑎𝑥 − 𝐼𝑚𝑎𝑥
𝑋

𝐾 + 𝑋
∫𝐿2𝑁(𝐿, 𝑡)𝑑𝐿              (eqn S7) 

 

The number length distribution of the population is determined by the four functions 

𝑆(𝐿(𝑡)), 𝐺(𝐿′, (𝐿(𝑡)), 𝑅(𝐿(𝑡)), and 𝐷(𝐿′, 𝐿(𝑡)), described in the main text, from which 

consumer density is calculated following Eqn 1 of the main text. In contrast to the DEB-IPM 

presented in the main text, expected feeding level, E(Y), is now directly related to resource 

density X. For a cohort of individuals of length L, this means that an increase in resource 

density X increases their experienced feeding level, and hence their growth and 

reproduction rates.  

 

Parameterisation of consumer-resource DEB-IPM 

 

We parameterised the consumer-resource DEB-IPM for bulb mites to study model dynamics 

as a function of  and Imax and adopted the default values of  = 0.1 and Imax = 0.1, and 

assumed that individuals can shrink in response to starvation conditions. The half-saturation 

constant was set at K = 5 and maximum resource density equals Xmax = 4. To prevent too 

small individuals from reproducing we introduced a minimum length for reproduction of 
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0.314 mm (equal to Lp on the low feeding level diet [Table 1 of the main text]). This means 

that in Eqn 10 and in Eqn 13 of the main text, the critical length at puberty above which 

individuals reproduce equals 𝐿𝑝 = max (0.314, 0.539𝐿∞). Using the bifurcation analysis 

method of de Roos & Persson (2013, p. 70-71), we carried out a single numerical simulation 

over a very long time period to study model dynamics as a function of . We subdivided this 

entire period into intervals during which the value of  was constant, while from one 

interval to the next, the value of  was increased or decreased by a small amount. This 

stepwise increase or decrease of  means that we used the final values of the model 

variables obtained for a particular value of  as initial values of the model variables for the 

following value of . As a result, we explored the full range of values of  from low to high 

and vice versa. The same approach was taken to explore the consequences of varying Imax. It 

is important to note that, in the Kooijman-Metz model, the parameters Lm and Rm are 

proportional to Imax (see above under “Modelling growth and reproduction”). This means 

that, for a cohort of individuals of length L, an increase (decrease) in Imax increases 

(decreases) the growth rate 𝐺(𝐿′, 𝐿(𝑡)) through an associated increase (decrease) in Lm (see 

Eqn 5 of the main text). Furthermore, a change in Imax affects the reproduction rate 𝑅(𝐿(𝑡)) 

through associated changes in Lm and Rm (see Eqn 10 of the main text). While studying 

model dynamics as a function of Imax, we therefore used the derived values 𝐿𝑚
′ =

𝐼𝑚𝑎𝑥
′ 𝐼𝑚𝑎𝑥𝑑𝑒𝑓𝑎𝑢𝑙𝑡 ∙ 𝐿𝑚𝑑𝑒𝑓𝑎𝑢𝑙𝑡⁄  and 𝑅𝑚

′ = (𝐼𝑚𝑎𝑥
′ 𝐼𝑚𝑎𝑥𝑑𝑒𝑓𝑎𝑢𝑙𝑡⁄ )

3

∙ 𝑅𝑚𝑑𝑒𝑓𝑎𝑢𝑙𝑡. Here, 𝐼𝑚𝑎𝑥
′  is the 

changed value of Imax, and 𝐿𝑚𝑑𝑒𝑓𝑎𝑢𝑙𝑡 and 𝑅𝑚𝑑𝑒𝑓𝑎𝑢𝑙𝑡  are the values of Lm and Rm, 

respectively, at the default value for Imax, 𝐼𝑚𝑎𝑥𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 0.1. Because a change in Lm affects 

the length domain Ω (Eqn 1 in the main text) over which the DEB-IPM is discretised, we 

adjusted the number of bins that the length domain was divided into for each simulation 
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run, keeping bin size the same between runs. As a result, matrix size differed between 

simulation runs and we could not use the above bifurcation analysis method. Instead, we 

carried out consecutive, independent numerical simulations of the resource and consumer 

dynamics, and, between consecutive runs, increased the value of Imax by a small amount, 

starting with a very low value of Imax = 0.05. Each run was started with the initial conditions 

∫ 𝑁(𝐿, 𝑡 = 0)𝑑𝐿 = 2
𝐿𝑚
𝐿𝑏

 and X(0) = Xmax. 

 

Consumer-resource DEB-IPM dynamics 

 

Fig. S4 illustrates the dynamics of the consumer-resource DEB-IPM. For both the resource 

(Fig. S4A), expected feeding level (Fig. S4B), juvenile density (Fig. S4C) and adult density (Fig. 

S4D), the consumer-resource DEB-IPM predicts a rapid approach to their respective 

equilibrium values. At equilibrium, the consumer population is dominated by juveniles and 

only a small proportion of consumers are adults (Fig. S4C-D), which is typical of bulb mite 

population structures (Smallegange & Deere 2014). Fig. S5 illustrates the long-term 

dynamics predicted by the consumer-resource DEB-IPM as a function of resource 

replenishment rate . With increasing values of , resource (Fig. S5A) and feeding level (Fig. 

S5B) remain constant but both juvenile density (Fig. S5C) and adult density (Fig. S5D) 

increase linearly until maximum values are reached at the maximum resource 

replenishment rate of  = 1. Fig. S6 illustrates the long-term dynamics predicted by the 

consumer-resource DEB-IPM as a function of maximum ingestion rate Imax. At low values of 

Imax, resource (Fig. S6A) and feeding level (Fig. S6B) are at their maximum values as adult and 

juvenile density are close to zero (Fig. S6C, D). As Imax increases, both juvenile and adult 
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density increase and resource and feeding level decrease, until consumers deplete the 

whole resource within one time step and go extinct (Fig. S6). 
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Figure S4. Dynamics of the resource X (A), expected feeding level E(Y) (B), juvenile consumer 

density ∫ 𝑁(𝐿, 𝑡)𝑑𝐿
𝐿𝑝
𝐿𝑏

 (C) and adult consumer density ∫ 𝑁(𝐿, 𝑡)𝑑𝐿
𝐿𝑚
𝐿𝑝

 (D) as predicted by the 

consumer-resource DEB-IPM starting from the initial conditions ∫ 𝑁(𝐿, 𝑡 = 0)𝑑𝐿 = 2
𝐿𝑚
𝐿𝑏

, 

X(0) = Xmax and other parameters at default values: K = 5, Imax = 0.1,  = 0.1, Xmax = 4, (Y) = 

0.3, and (DEB parameters)  = -137.8,  = 151.0,  = 0.082, Lb = 0.166, Lm = 1.008,  = 0.03, 

Rm = 32. The DEB parameter Lp depends on feeding level (see main text).   
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Figure S5. Dynamics of the resource X (A), expected feeding level E(Y) (B), juvenile consumer 

density ∫ 𝑁(𝐿, 𝑡)𝑑𝐿
𝐿𝑝
𝐿𝑏

 (C) and adult consumer density ∫ 𝑁(𝐿, 𝑡)𝑑𝐿
𝐿𝑚
𝐿𝑝

 (D) for different values 

of . Results plotted are the final values obtained within each interval of the entire 

simulation period, within which the value of  was kept constant (all other parameters have 

default values: see legend Fig. S4).  
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Figure S6. Long-term values of the resource X (A), expected feeding level E(Y) (B), juvenile 

consumer density ∫ 𝑁(𝐿, 𝑡)𝑑𝐿
𝐿𝑝
𝐿𝑏

 (C), and adult consumer density ∫ 𝑁(𝐿, 𝑡)𝑑𝐿
𝐿𝑚
𝐿𝑝

 (D) for 

different values of the maximum ingestion rate Imax. The values of Lm and Rm depends on Imax 

(see text here in SI) and all other parameters have default values (see legend Fig. S4). At the 

highest value of Imax, consumers deplete the resource within one time step and go extinct 

(indicated by †). 

 


